
Reverse engineering
cyberchallenge.it 2025

What’s reverse engineering?
Most of the codes out there are closed source.
The aim of reversing is to understand what is happening
under the hood of a software as deep as possible.

Why should I reverse?
▫ Malware analysis
▫ Exploit analysis
▫ Game Cheating & mod dev
▫ Find vulns
▫ …
▫ Ctf points

2 ways of reversing:

Static analysis
Cons:
▫ no clue what data the program is

using
▫ code can be heavily obfuscated

Pros:
▫ safety
▫ no specific

hardware/emulator required
▫ cover all execution path
▫ bypass anti debug tricks

Dynamic analysis
Cons:
▫ anti debug techniques exists
▫ you could need libraries or

emulators to run the program

Pros:
▫ you actually see which data

the program is using
▫ could be faster

ELF: executable and linkable format

ELF - sections and symbols
▫ .text : contains executable code and is generally read-only and fixed

size

▫ .data : global variables and local static variables which have a defined
value and can be modified

▫ .bss : global variables and local static variables that are initialized to
zero or do not have explicit initialization

▫ .rodata : used for global read-only data
▫ …

How do I get specific informations?
$ readelf -header <file>
$ readelf -s <file>

https://en.wikipedia.org/wiki/Executable

Readelf

Strip binaries
$ strip <file>
This removes .symtab and debug
sections entirely.
Stripping binaries makes them
much lighter

Strings

File

Static analysis: tools

Preliminary analysis:
▫ strings
▫ nm
▫ readelf
▫ ldd
▫ file

Deep analysis:
❖ Got money?

➢ IDA pro
➢ Binary ninja

❖ Only cli?
➢ radare2

❖ Open source?
➢ Ghidra

https://ghidra-sre.org/

ltrace & strace
ltrace: library call tracer
strace: trace system call
and signal

Dynamic analysis: tools

Preliminary analysis:
▫ ltrace
▫ strace

Deep analysis:
▫ gdb (gef or pwndbg)
▫ rr
▫ frida

https://github.com/hugsy/gef
https://github.com/pwndbg/pwndbg

Tips & tricks
▫ play around with the executable to get a grasp on what it’s doing
▫ Use both static and dynamic analysis. e.g.: while doing static analysis

make some guesses and try to verify/disproof that hypothesis
▫ When reversing a huge codebase, don’t waste time on trying to

understand everything. Focus on the things you think are important.
Most of the time you can ignore lots of stuff and still get what’s
happening.

▫ Fai roba a caso - Nick0ve

Time for a live demo:
What are you gonna learn?

▫ basic use of ghidra
▫ install third parties extension/script
▫ add debug sections or symbols
▫ patch binaries
▫ basic use of gdb

18

Ghidra

19

▫ install Java [>21]
▫ download Ghidra
▫ unzip and execute ghidraRun

https://github.com/NationalSecurityAgency/ghidra/releases

Create Project

20

Create Project

21

Add executable to project
drag & drop

22

Analyze file
double click

23

GUI
drag & drop
windows in
the
interface

24

Add windows

25

rename variable or functions
press L

26

change variable type
press CTRL+L

27

color legend

28

patch instructions

29

patch instructions
file -> export program
select format “Original File” and output file name

30

External Script
▫ download syms2elf or ghidra2dwarf

31

https://github.com/nick0ve/syms2elf
https://github.com/cesena/ghidra2dwarf

External Script
then choose the directory

32

Run script

double click on script

33

Find reference to

34

Search Memory

35

Copy Special

36

find Main in stripped elf

37

Resolve Linux Syscall
ResolveX86orX64LinuxSyscallsScript.java

38

Simple stack strings
▫ code
▫ tutorial

39

https://github.com/0x6d696368/ghidra_scripts/blob/master/SimpleStackStrings.py
https://www.youtube.com/watch?v=K_2khlMATew

Dark Theme

40

Additional Material for Ghidra

41

▫ What are you telling me, Ghidra?
▫ Mio padre StackSmashing

https://byte.how/posts/what-are-you-telling-me-ghidra/
https://www.youtube.com/watch?v=fTGTnrgjuGA

▫ r - run
▫ r < file.txt - run with input from file
▫ r args - run with arguments
▫ ni - next instructions
▫ si - step instruction
▫ br <addr> - break points
▫ c - continue executing
▫ fin - finish executing current function
▫ disass <function> - disassemble function
▫ x/4g <addr> - examine 4 long of memory
▫ x/s <addr> - examine as string
▫ x/i - examine as instructions

gdb (gef)

42

▫ got - show global offset table
▫ telescope - show stack
▫ canary - print canary
▫ vmmap - show memory regions

NOT intended to be complete list, refer to nicer
cheatsheet or official documentation.

https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Java Decompiler
jd-gui

43

http://java-decompiler.github.io/

Z3 theorem prover

Crackme & keygenme
Spesso le challenge di reverse engineering prevedono l’analisi di
software simili ai checker delle licenze.
Questo genere di challenge prende il nome di crackme ed emulano
il processo di cracking dei programmi proprietari protetti da
licenza.
Il tipico flusso di un software del genere prevede la lettura
dell’input utente, una sua manipolazione ed il successivo controllo
di validità, attraverso una stringa nota o altre procedure.

45

z3-solver
z3-solver è una libreria che ci permette di risolvere
problemi di tipo SAT, cioè permette di trovare i valori che
rendono vere delle equazioni che gli diamo in pasto.
Una volta ricavate quindi le operazioni che il software
calcola sui dati in ingresso possiamo lasciare a z3 il
compito di trovare i valori che rendono vero il sistema.

46

Installazione ed import
E’ una libreria python, possiamo quindi installarla
attraverso pip:

pip install z3-solver

Per comodità importiamo tutto:
from z3 import *

47

Variabili
Dato che dobbiamo scrivere delle equazioni,
necessitiamo di variabili da usare. Ne abbiamo di diversi
tipi, i principali sono:
- intere: x = Int(‘x’)
- booleane: x = Bool(‘x’)
- bitvector: x = BitVec(‘x’, <dimensione>)

48

Variabili (cont.)
Per rappresentare al meglio i valori dei programmi
compilati conviene usare i BitVec in quanto permettono
l’ overflow e le operazioni bit a bit.
Le variabili intere invece non hanno una dimensione
massima e sono più simili agli interi di python.
In una sola chiamata possiamo dichiarare più variabili:

x, y, z = BitVecs(‘x y z’, 32)

49

Singole equazioni
Per risolvere delle singole equazioni possiamo usare la
funzione solve:

solve(x * 2 == 4)
[x = 2]

50

Solver
Per costruire equazioni più complesse ed in maniera più
automatizzata possiamo ricorrere all’oggetto Solver che
ci permette di aggiungere equazioni e costruire un
sistema completo da fargli risolvere.
Una volta costruito si può controllare se sia risolvibile o
meno ed in caso positivo estrarre dei valori come
soluzione.

51

Solver (cont.)
Per creare un oggetto solver:

s = Solver()
Per aggiungere una equazione:

s.add(x*2 == 4)
Per controllare la soddisfacibiltà:

s.check()
Per estrarre la soluzione, se il sistema è sat:

s.model()

52

8 Queen Problem

53

Demo
Risolviamo assieme la challenge coffee_hash.

54

https://training.olicyber.it/challenges#challenge-97

Coffee Hash

55

Risorse
- Documentazione completa di z3: link
- Programming z3

- Introduction to angr
- Raccolta di challenge per imparare angr
- Klee: un altro symbolic execution engine

56

https://z3prover.github.io/api/html/namespacez3py.html
https://theory.stanford.edu/~nikolaj/programmingz3.html
https://blog.notso.pro/2019-03-20-angr-introduction-part0/
https://github.com/jakespringer/angr_ctf
http://klee.github.io/

LD_PRELOAD trick
Now we’d like to achieve whats called Function Hooking.
We can hook and substitute every function in a shared
object (like libc)

57

ld.so & ldd
The programs ld.so and ld-linux.so find and load the
shared objects (shared libraries) needed by a program,
prepare the program to run, and then run it.

58

LD_PRELOAD
LD_PRELOAD is and environment variable used to
specify shared object to be loaded before all the others.
This feature can be used to selectively override
functions in other shared objects.

59

How to?
dlsym: obtain address
of a symbol in a shared
object or executable

60

